• Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow
Cover in höchster Auflösung herunterladen

Aurélien Géron
Kristian Rother (Übersetzung)

Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow

Konzepte, Tools und Techniken für intelligente Systeme

Dezember 2017, 576 Seiten, Broschur
O’Reilly
ISBN Print: 978-3-96009-061-8

Buch
42,90 €
E-Book in Vorbereitung

  Buch in den Warenkorb legen

Buch in den Warenkorb gelegt

 

Beschreibung

Durchbrüche beim Deep Learning haben das maschinelle Lernen in den letzten Jahren eindrucksvoll vorangebracht. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses praxisorientierte Buch zeigt Ihnen wie.

Mit konkreten Beispielen, einem Minimum an Theorie und zwei unmittelbar anwendbaren Python-Frameworks – Scikit-Learn und TensorFlow – verhilft Ihnen der Autor Aurélien Géron zu einem intuitiven Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme. Sie lernen eine Vielzahl von Techniken kennen, beginnend mit einfacher linearer Regression bis hin zu neuronalen Netzen. Übungen zu jedem Kapitel helfen Ihnen, das Gelernte in die Praxis umzusetzen. Sie benötigen lediglich etwas Programmiererfahrung, um direkt zu starten.

- Entdecken Sie Machine Learning, insbesondere neuronale Netze und das Deep Learning
- Verwenden Sie Scikit-Learn, um ein Machine-Learning-Beispielprojekt vom Anfang bis zum Ende nachzuvollziehen
- Erkunden Sie verschiedene trainierbare Modelle, darunter Support Vector Machines, Entscheidungsbäume, Random Forests und Ensemble-Methoden
- Nutzen Sie die Bibliothek TensorFlow, um neuronale Netze zu erstellen und zu trainieren
- Lernen Sie Architekturen neuronaler Netze kennen, darunter Convolutional Nets, Recurrent Nets und Deep Reinforcement Learning
- Eignen Sie sich Techniken zum Trainieren und Skalieren von neuronalen Netzen an
- Wenden Sie Codebeispiele an, ohne exzessiv die Theorie von Machine Learning oder die Algorithmik durcharbeiten zu müssen

Dieses Buch ist eine ausgezeichnete Einführung in Theorie und Praxis der Problemlösung mit neuronalen Netzen. Es behandelt alle Kernpunkte, die Sie zum Entwickeln effektiver Anwendungen benötigen, und gibt Ihnen genug Hintergrundwissen, um die neuesten Forschungsergebnisse zu verstehen. Ich kann dieses Buch jedem empfehlen, der sich für die Praxis von ML interessiert.
— Pete Warden, Mobile Lead bei TensorFlow

 

Zielgruppe

  • Data Scientists
  • Datenanalysten
  • Studenten der Informatik
 

Leseproben

     

Autor / Autorin

Aurélien Géron arbeitet als Consultant für Machine Learning. Als ehemaliger Mitarbeiter von Google hat er von 2013 bis 2016 das YouTube-Team zur Klassifikation von Videos geleitet. Er war von 2002 bis 2012 Gründer und CTO von Wifirst, einem führenden Wireless ISP in Frankreich; 2001 war er Gründer und CTO von Polyconseil, der Firma, die inzwischen den Carsharing-Dienst Autolib´ verwaltet.
Davor war er als Ingenieur in verschiedenen Bereichen tätig: Finanzen (JP Morgan und Société Générale), Verteidigung (das Department of Defense in Kanada) und Gesundheit (Bluttransfusionen). Er hat einige technische Bücher veröffentlicht (zu C++, WiFi und Internetarchitekturen) und war Dozent für Informatik in einer französischen Ingenieursschule.
Sonstige wissenswerte Dinge: Er hat seinen drei Kindern beigebracht, mit den Fingern binär zu zählen (bis 1023), hat Mikrobiologie und Evolutionsgenetik studiert, bevor er sich der Softwareentwicklung zugewandt hat, und sein Fallschirm ging bei seinem zweiten Absprung nicht auf.


Andere Bücher, die Sie interessieren könnten: