• Datenanalyse mit Python
Cover in höchster Auflösung herunterladen

Wes McKinney
Kathrin Lichtenberg (Übersetzung)

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

2. Auflage
Oktober 2018, 542 Seiten, Broschur
O’Reilly
ISBN Print: 978-3-96009-080-9
ISBN PDF: 978-3-96010-213-7
ISBN ePub: 978-3-96010-214-4
ISBN Mobi: 978-3-96010-215-1

Buch
44,90 €


auf Lager; Lieferung in 2-4 Tagen
E-Book (PDF + ePub + Mobi)
35,99 €

  Buch in den Warenkorb legen

Buch in den Warenkorb gelegt

 

Beschreibung

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.

Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.

Aus dem Inhalt:
- Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative Computing
- Lernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennen
- Setzen Sie die Datenanalyse-Tools der pandas- Bibliothek ein
- Verwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von Daten
- Erstellen Sie interformative Visualisierungen mit matplotlib
- Wenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassen
- Analysieren und manipulieren Sie verschiedenste Zeitreihen-Daten

Für diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

“Bereits ein Klassiker im Python-Ökosystem, wurde diese Neuauflage in allen Bereichen aktualisiert, von Python 3.6 bis zu den neuesten Funktionen von pandas. Durch die genaue Erklärung der Datenwerkzeuge von Python hilft dieses Buch Lesern dabei, sie effektiv in neuer und kreativer Weise zu nutzen. Das Buch ist ein wesentlicher Bestandteil einer jeden modernen Bibliothek zum datenintensiven Computing.”
— Fernando Pérez, Assistant Professor für Statistik an der UC Berkeley, Begründer von IPython und Mitbegründer von Project Jupyter

 

Zielgruppe

  • Datenanalysten in Forschung, Wirtschaft, Marketing oder Marktforschung
 

Leseproben

     

Autor / Autorin

Wes McKinney ist Softwareentwickler und Unternehmer und lebt in New York. Nach dem Abschluss seines Mathematikstudiums am MIT im Jahre 2007 arbeitete er im Bereich der quantitativen Finanzen bei AQR Capital Management in Greenwich, Connecticut. Frustriert von umständlichen Datenanalysewerkzeugen lernte er Python und startete das pandas-Projekt. Inzwischen ist er ein aktives Mitglied der wissenschaftlichen Python-Community und ein Verfechter des Einsatzes von Python in Datenanalyse, Finanzen und Statistikanwendungen.

Später war Wes Mitbegründer und CEO von DataPad, das im Jahre 2014 von Cloudera übernommen wurde. Seitdem befasst er sich auch mit der Big-Data-Technologie und ist Teil der Projektmanagementkomitees für die Projekte Apache Arrow und Apache Parquet in der Apache Software Foundation. 2016 ist er zu Two Sigma Investments in New York City gewechselt, wo er weiterhin daran arbeitet, die Datenanalyse durch Open-Source-Software schneller und einfacher zu machen.


Andere Bücher, die Sie interessieren könnten: